Корзина
23 отзыва
+380503449977
+380675522877
ООО Гидро-Максимум
Корзина

Объемный гидропривод

Объемный гидропривод

Объемный гидропривод

Объемный гидропривод представляет собой совокупность объемных гидромашин, гидроаппаратуры, гидролиний (трубопроводов) и вспомогательных устройств, предназначенных для передачи энергии и преобразования движения посредством жидкости.

К числу гидромашин относятся насосы и гидродвигатели, которых может быть несколько. Гидроаппаратура – это устройства управления гидроприводом, при помощи которых он регулируется, а также средства защиты его от чрезмерно высоких и низких давлений жидкости. К гидроаппаратуре относятся дроссели, клапаны разного назначения и гидрораспределители – устройства для изменения направления потока жидкости. Вспомогательными устройствами служат кондиционеры рабочей жидкости, обеспечивающие ее качество и состояние. Это различные фильтры и центрифуги, теплообменники (нагреватели и охладители жидкости), гидроемкости, а также гидроаккумуляторы. Перечисленные элементы связаны между собой гидролиниями, по которым движется рабочая жидкость. Функциональная схема представлена на рис.13.1.

Рис.13.1

По виду источника энергии объемные гидроприводы разделяют на три вида.

1. Насосный гидропривод – гидропривод, в котором рабочая жидкость подается в гидродвигатель объемным насосом, входящим в состав этого гидропривода. Он применяется наиболее широко. По характеру циркуляции рабочей жидкости насосные гидроприводы разделяют на гидроприводы с замкнутой циркуляцией жидкости (жидкость от гидродвигателя поступает во всасывающую линию насоса) и гидроприводы с разомкнутой циркуляцией (жидкость от гидродвигателя поступает в гидроемкость). Мобильные машины в основном оборудованы гидроприводом с разомкнутой циркуляцией жидкости.

2. Аккумуляторный гидропривод, в котором рабочая жидкость подается в гидродвигатель от предварительно заряженного гидроаккумуятора. Такие гидроприводы используют в системах с кратковременным рабочим циклом или с ограниченным числом циклов.

3. Магистральный гидропривод, в котором рабочая жидкость поступает в гидродвигатель из гидромагистрали. Давление рабочей жидкости в гидромагистрали создается насосной станцией, состоящей из одного или нескольких насосов и питающей несколько гидроприводов.

Принципиальная схема гидропривода

По кинематическому признаку объемный гидропривод бывает поступательного, вращательного или поворотного движения.

На рис. 13.2 показана принципиальная схема гидропривода с разомкнутой циркуляцией жидкости. На схеме указаны только основные элементы.

1 – насос регулируемый (может быть и нерегулируемый); 2 - гидродвигатель поступательного движения (гидроцилиндр); 2а – гидродвигатель вращательного движения (гидромотор); 2б – гидродвигатель поворотного движения; 3 – гидрораспределитель; 4 - предохранительный клапан; 5 – гидроемкость

Рис. 13.2

На рис.13.3 приведена схема гидропривода вращательного движения с замкнутой циркуляцией жидкости. На схеме изображены регулируемый насос 1 с реверсом подачи; регулируемый гидромотор 2 с реверсом вращения; предохранительные клапаны 3, защищающие гидролинии а и б от чрезмерно высоких давлений; система подпитки, состоящая из вспомогательного насоса 4, переливного клапана 5 и двух обратных клапанов 6 и предохраняющая гидролинии а и б от чрезмерно низких давлений (в целях избежания кавитации в насосе).

Рис. 13.3

На рис.13.2 и 13.3 изображены схемы гидроприводов раздельного исполнения, т.е. такие, в которых гидродвигатели расположены на расстоянии от насоса и соединены с ним трубопроводом. Это расстояние может измеряться метрами и даже десятками метров. Часто, особенно в самоходных машинах (тракторы, строительные, дорожные, сельскохозяйственные машины и др.), применяют гидроприводы в нераздельном исполнении. В них насос, гидромоторы и гидроаппаратура расположены в общем корпусе и образуют компактную гидротрансмиссию, способную бесступенчато изменять частоту вращения ведомого вала и удобную для автоматизации управления приводимой машины. В таких трансмиссиях, заменяющих ступенчатые коробки передач, как правило, используются регулируемые аксиально-поршневые гидромашины.

Область применения объемных гидроприводов

В настоящее время объемные гидроприводы широко применяют во многих отраслях техники:

- в сельскохозяйственных машинах – для управления навесными агрегатами, в уборочных комбайнах в качестве силовых трансмиссий, как рулевое управление тракторов и комбайнов;

- в металлорежущих станках, автоматах и агрегатах – для зажима заготовок и подачи режущего инструмента. Следящие гидроприводы копировальных станков позволяют обрабатывать детали с применением копира. Применяют также следящие гидроприводы с числовым программным управлением;

- в кузнечно-прессовом оборудовании – в качестве силовых приводов прессов и молотов;

- в водном транспорте – в качестве силовых приводов гребных установок, палубных лебедок, кранов и других вспомогательных судовых механизмов, а также для поворота рулей судов;

- в шахтном и горнорудном оборудовании (в угледобывающих комбайнах, стругах, домкратах и механизмах подачи);

- в транспортных машинах – для силовых трансмиссий, управления скоростями движения и поворотом руля автомобиля, опрокидывания кузова самосвалов;

- в дорожных и подъемно-загрузочных машинах (экскаваторах, грейдерах, скреперах, бульдозерах, кранах и т.д.) – для подъема и перемещения груза;

- в авиационной и ракетной технике – для управления аэродинамическими и газовыми рулями, в механизмах изменения геометрии крыла, в механизмах управления шасси и наземных установках обеспечения и запуска летательных аппаратов;

- в радиолокационной технике – для поворота антенн. При этом практически не возникают ни магнитные, ни электрические помехи;

- в манипуляторах – в качестве силовых приводов отдельных органов, которые довольно просто обеспечивают обратную связь по усилиям, возникающим на рабочих органах манипулятора.

Достоинства и недостатки объемных гидроприводов

Объемные гидроприводы обладают следующими достоинствами.

1. Способность передавать большие усилия при малых размерах установки. гидравлические системы, проигрывая электрическим в компактности и массе аппаратуры управления, значительно превосходят последние по конструктивным возможностям получения малогабаритных и мощных исполнительных механизмов. Например, габариты современного гидромотора составляют 12…20% габаритов электродвигателя той же мощности.

2. Гидродвигатели вращательного действия (гидромоторы) обладают значительно меньшим моментом инерции, чем электродвигатели. Благодаря этому возможно высокое быстродействие гидромотора (время разгона составляет 0,1 с, время реверса 0,03…0,20 с). Вследствие этого гидропривод обеспечивает высокую частоту реверсирований: для гидромотора – до 500 и более, для гидроприводов прямолинейного движения с относительно небольшими массой и ходами – до 1000 в минуту.

3. Возможность бесступенчатого регулирования выходной скорости в широком диапазоне. Например, передаточное отношение гидромотора (отношение минимальной частоты вращения к максимальной) составляет во многих случаях 1:1000. Нижний предел частоты вращения большинства существующих гидромоторов доведен до 5···10 об/мин, чего не скажешь об электродвигателях.

4. Независимость расположения узлов гидросистемы и возможность разветвления мощности. В этом отношении гидропривод подобен электроприводу. В гидроприводах разнообразное взаимное расположение насосов и гидродвигателей обеспечивается применением трубопроводов. Мощность потока жидкости на выходе из одного насоса легко разветвлить для привода нескольких гидродвигателей. Применение секционных насосов еще более упрощает эту функцию.

5. Простота преобразования вращательного движения в поступательное или поворотное. Система насос – гидроцилиндр или насос – моментный гидроцилиндр позволяет легко преобразовывать движение в поступательное или поворотное. При этом обеспечиваются независимость расположения узлов, достаточная величина перемещения, надежная фиксация рабочего органа в любом заданном положении и возможность регулирования скорости перемещения.

6. Сравнительная простота предохранения гидропривода и рабочей машины от перегрузок. Это достигается установкой предохранительного клапана на выходе из насоса.

7. Сравнительная простота автоматического регулирования привода.

8. Самосмазываемость узлов гидропривода. Это весьма ценное достоинство, т.к. при создании механических силовых приводов необходимо предусматривать и систему смазки.

9. Простота изготовления элементов гидропривода и эксплуатации. Высокая надежность и долговечность. Так, срок службы многих типов насосов и гидродвигателей доведен до 20000 часов и более, а гидрораспределитель с электрогидравлическим управлением при давлении 12,5 МПа выдерживает около 2000000 переключений, сохраняя работоспособность.

В качестве примера, который наглядно показывает надежность гидрооборудования, могут послужить наблюдения за работой и хронометраж простоев двух автоматических линий. Простои линии из-за неисправностей электрооборудования составляют 14…35% от всех потерь, по вине гидрооборудования – 0,42…1,12%.

Недостатки гидроприводов:

1. Ограничение скорости течения жидкости в гидросистеме (3…5м/с).

2. Насыщение рабочей жидкости воздухом, нагрев и загрязнение.

Это приводит к ее усиленному нагреву за счет выделения тепла при сжатии воздуха, нарушению быстроты и точности срабатывания выходного звена гидропривода. Изменение температуры рабочей жидкости оказывает влияние на эксплуатационную характеристику системы. Если 6…10% сжимаемого объема рабочей жидкости составляет растворенный воздух, то при снижении давления в системе жидкость вспенивается, а при резком изменении нагрузки может возникнуть скачкообразное перемещение исполнительного механизма.

Загрязнение рабочей жидкости приводит к повышенному износу, увеличению зазоров в подвижных элементах гидрооборудования, снижению объемного к.п.д. системы.

Анализ причин отказов и нарушений в работе гидрофицированых машин и систем показывает, что примерно 75% всех неисправностей являются следствием перечисленных выше факторов.

Действие этих факторов может быть устранено или в значительной степени снижено при условии, если гидравлическая система спроектирована правильно или грамотно эксплуатируется.

Требования к рабочей жидкости

Рабочая жидкость гидросистем должна обладать:

- хорошими смазывающими свойствами по отношению к материалам трущихся пар;

- минимальной зависимостью вязкости от температуры в требуемом диапазоне температур;

- малой упругостью насыщенных паров и высокой температурой кипения. В жидкость не должны входить легкоиспаряющиеся компоненты, что может привести к загустению жидкости;

- нейтральностью к применяемым материалам и малым абсорбированием воздуха, а также легкостью его отделения;

- устойчивостью к окислению и длительным сроком службы;

- высоким объемным модулем упругости и малым коэффициентом теплового расширения;

- высокими изолирующими и диэлектрическими свойствами.

Все многообразие применяемых в гидроприводах рабочих жидкостей можно разделить на две группы: на минеральной (нефтяной) и синтетической основах. Рабочие жидкости на нефтяной основе имеют сравнительно низкую верхнюю границу температурного диапазона и содержат различные антиокислительные и антикоррозионные присадки. Синтетические рабочие жидкости обладают высокотемпературными свойствами; они негорючие, но очень дороги.

 

Объемный гидропривод возвратно-поступательного движения

В качестве гидродвигателей (см. рис. 13.2) в этих приводах используются силовые гидроцилиндры, в которых возвратно-поступательное движение осуществляется под действием давления рабочей жидкости.

В зависимости от конструктивного исполнения силовые цилиндры могут быть - с односторонним выходом штока (а); - с двухсторонним (б); - телескопические (в) (рис.13.4).

а б в

Рис. 13.4

Основными рабочими элементами силового цилиндра являются шток с поршнем и цилиндр, то есть из всех гидравлических машин силовые цилиндры являются самыми простыми по конструкции.

Один из элементов (шток или цилиндр) крепится к объекту неподвижно, другой совершает возвратно-поступательное движение под давлением рабочей жидкости, действующей на поршень, или внешней нагрузки.

Если шток с поршнем под действием рабочей жидкости может перемещаться в двух противоположных направлениях, то такие гидроцилиндры двухстороннего действия, если в одном – одностороннего. Обратный ход цилиндра одностороннего действия совершается под действием внешней нагрузки или пружины.

В большинстве случаев эти гидроцилиндры не имеют поршней, роль последних выполняют штоки (плунжеры).

Для предупреждения наружных утечек рабочей жидкости по разъемам силового цилиндра и штоку, а также перетекания жидкости из одной полости в другую поршень, шток и неподвижные разъемные соединения герметизирую при помощи специальных уплотнительных устройств.

Помимо обеспечения возвратно-поступательного движения силовые цилиндры широко используются для поворота вала 1 на ограниченный угол (до 120о), что упрощает кинематику приводных механизмов (рис.13.5).

Рис .13.5

Для целей поворота выходного вала с ограниченным углом выпускаются поворотные гидродвигатели (моментные гидроцилиндры) (рис.13.6). Ротор уплотнен радиально корпуса 3 подвижной 4 и неподвижной 1 пластинами, образующими камеры 2 и 2´, в которые подводится и отводится жидкость. Так как применение многокамерных поворотных гидродвигателей сокращает возможный угол поворота вала (ротора), число камер более четырех используют редко.

Рис.13.6

Принцип расчета гидропривода

Представим схему гидропривода с разомкнутой циркуляцией жидкости (рис.13.7) и для упрощения последующих расчетов выберем силовой цилиндр с двухсторонним выходом штока и все гидролинии одного диаметра. Таким образом, скорость движения рабочей жидкости в гидролиниях будет одинаковой.

Рис.13.7

При расчете такого гидропривода силовой цилиндр рассматривается как местное сопротивление, на котором произошел перепад давления Δрц = р- р2 при движении поршня, например, слева направо.

Перепад давления Δрц может быть выражен из уравнения равновесия поршня:

.

Силой инерции РИ при расчете таких гидроприводов обычно пренебрегают; так как сила трения Тзависит от качества обработки внутренних поверхностей и в нашем случае незначительно зависит от внешней нагрузки Р, то ее можно считать величиной постоянной и из анализа исключить. Тогда

.

Давление рн, которое необходимо создать насосу будет больше полученного Δрц на величину потерь давления в системе Σртр:

.

Так как система гидравлического привода является частным случаем короткого трубопровода, то при подсчете потерь давления должны быть учтены как линейные, так и местные потери:

.

Выразим скорость движения рабочей жидкости по гидролиниям через подачу насоса из выражения

.

Тогда

Для конкретной гидравлической системы выражение в скобках будет величиной постоянной. Обозначим ее буквой «В». Тогда можно записать

 

.

 

 

(13.1)

По выражению (13.1) построим гидравлическую характеристику системы и, наложив на нее характеристику объемного насоса, получим в их пересечении рабочую точку системы (точка А) (рис. 13.8)

или рабочий режим системы: ;.

Рис. 13.8

При этом мощность, потребляемая насосом:

.

Если нагрузка вдоль штока Р не меняется по ходу поршня, то делением объема цилиндра на расход можно определить время совершения операции или время, потребное для перемещения поршня из одного крайнего положения в другое. Зная при этом перемещение поршня, легко определить скорость его перемещения V. Тогда полезная мощность гидропривода и его к.п.д. определяются из выражения

.

 

 

Объемный гидропривод вращательного движения

Объемный гидропривод вращательного движения представляет собой соединение насоса и гидродвигателя объемно-роторного типа, называемого гидромотором. Гидромотор по своей конструкции является таким же насосом, но обращенным в двигатель. Все объемные роторные насосы, как указывалось выше, обладают свойством обратимости, т.е. могут быть использованы как насос, так и гидромотор.

Представим упрощенную схему (рис.13.9) такого привода замкнутого типа, оставив только по сравнению со схемой (см. рис.13.3) насос и гидромотор.

Рис. 13.9

Рассмотрим основные соотношения для такого гидропривода, причем величины, относящиеся к насосу, обозначим индексом «1», относящиеся к гидромотору – индексом «2».

Действительная подача насоса равна действительному расходу через гидромотор: Q1 = Q2.

Перейдем от действительных параметров к теоретическим.

Действительная подача насоса меньше теоретической:

.

Действительный расход через гидромотор больше теоретического, так как утечки в гидромоторе направлены в ту же сторону, что и основной расход:

,

где η01, η02 – объемные к.п.д. соответственно насоса и гидромотора.

Отсюда объемный к.п.д. всего гидропривода

.

Благодаря наличию гидравлических потерь в трубопроводах, соединяющих насос и гидромотор, давление, создаваемое насосом р1, будет больше давления, используемого гидромотором р2. отношение последнего к первому называется гидравлическим к.п.д. гидропривода, который имеет вид

,

где  ;;.

,

т.е. разность между давлением, создаваемым насосом, и давлением, используемым гидромотором, равна суммарной потере давления в трубопроводах(Σртр).

Запишем теперь энергетические уравнения для насоса и гидромотора, т.е. выразим мощность, затрачиваемую на вращение насоса N1, и мощность, развиваемую гидромотором N2. учитывая, что N=МΩ, для насоса получим

;

для гидромотора

,

где М – крутящий момент; Ω – угловые скорости; η – к.п.д.

Делением второго уравнения на первое найдем значение полного к.п.д. всего гидропривода, который, с одной стороны:

,

где К – коэффициент трансформации момента;

с другой стороны, в результате того же деления:

,

т.е. полный к.п.д. гидропривода равен произведению гидравлического к.п.д. на полные к.п.д. насоса и гидромотора.

Значение полного к.п.д. объемных гидроприводов вращательного движения колеблется в пределах 0,70…0,85.

Регулирование скорости гидропривода

При эксплуатации гидрофицированных машин, станков и механизмов возникает естественная необходимость в регулировании скорости выходного звена гидропривода. Известно, что эта скорость (угловая – вала гидромотора или линейная - штока гидроцилиндра) зависит от расхода подаваемой в гидродвигатель рабочей жидкости.

В зависимости от способа изменения этого расхода различают объемное и дроссельное регулирование. Тот и другой способы регулирования не зависят от кинематического признака гидропривода, но зависят от других факторов, в частности, от характера изменения нагрузки, выходной скорости гидродвигателя; определяются они и экономическими соображениями.

Рассмотрим объемный способ регулирования применительно к гидроприводу вращательного движения, а дроссельный – применительно к гидроприводу возвратно–поступательного движения.

Объемное регулирование

Расчетную частоту вращения вала гидромотора n2 определяют из условий равенства подачи насоса Q1 и расхода жидкости гидромотора Q2, т.е. Q1=Q2 или W1·n1=W2·n2, откуда

,

где W1, W2 – рабочие объемы соответственно насоса и гидромотора.

Частота вращения вала насоса n1 постоянна для гидроприводов с объемным регулированием, т.к. эта частота номинальна для приводящего двигателя, при которой к.п.д. двигателя будет максимальным.

Следовательно, регулирование частоты вращения гидромотора возможно тремя способами: изменением рабочего объема насоса (рис.13.10), гидромотора (рис. 13.11) или одновременно насоса и гидромотора (рис.13.12).

Рис.13.10 Рис.13.11 Рис.13.12

Первый способ применяют в гидроприводах поступательного, поворотного и вращательного движения, второй и третий – только в гидроприводах вращательного движения.

гидропривод с регулируемым насосом и нерегулируемым гидромотором является самым распространенным видом объемного регулирования (рис.13.10). Принцип работы гидропривода заключается в следующем. При включении приводящего двигателя насос 1 нагнетает рабочую жидкость по напорной линии в гидромотор 2, вал которого под действием крутящего момента вращается в определенном направлении. Из гидромотора 2 рабочая жидкость по сливной линии снова поступает в насос. Давление в гидросистеме р1 зависит от нагрузки гидромотора:

,

где М2 – крутящий момент гидромотора, Н·м; W2 – рабочий объем гидромотора, м3; ртр – потери давления в гидролиниях, Па.

Частоту вращения гидромотора регулируют, изменяя рабочий объем насоса, а направление вращения вала гидромотора изменяют благодаря реверсированию потока рабочей жидкости, создаваемого насосом. При этом сначала подачу насоса уменьшают до нуля, а затем увеличивают, но в противоположном направлении. В результате функции гидролиний меняются: сливная становится напорной, напорная – сливной.

На рис.13.13 показаны характеристики такого гидропривода с учетом следующих условий: n1=const; W2=const; p2=const. Основные параметры гидропривода определяют по следующим формулам:

Рис. 13.13

гидропривод с регулируемым гидромотором и нерегулируемым насосом (рис.13.11) применяют значительно реже по сравнению с гидроприводами, которые имеют регулируемые насосы. На рис.13.14 показаны характеристики такого гидропривода с учетом следующих условий: n1=const; W1=const; р2= const. Основные параметры гидропривода определяют по формулам

Рис. 13.14

Частота вращения гидромотора изменяется в рассматриваемом гидроприводе обратно пропорционально рабочему объему гидромотора. Например, чтобы увеличить частоту вращения гидромотора, необходимо уменьшить его рабочий объем (при этом уменьшается его крутящий момент). Теоретическая мощность привода (без учета потерь) в данном гидроприводе является постоянной. К недостаткам такого привода следует отнести сложность управления гидромоторами в случае их значительного удаления от операторов и ограничение минимального рабочего объема гидромотора, при котором момент, развиваемый гидромотором, становится равным или меньше момента внутреннего трения (самоторможение).

Гидропривод с регулируемым насосом и гидромотором. Для такого привода (рис.13.12) характерен больший диапазон регулирования частоты вращения и момента, развиваемого гидромотором. Обеспечение характеристики М2=f(n2), как показано на рис. 13.15, дает возможность использовать этот гидропривод в транспортных средствах, где необходимо осуществлять трогание машины с моментом Mmax при очень малой скорости (n2≈0). По мере разгона момент должен снижаться, а частота вращения увеличиваться. Это достигается уменьшением (регулированием) рабочего объема гидромотора. Применение регулируемого насоса увеличивает диапазон регулируемого привода, но из-за сложности двойного регулирования такой гидропривод пока не нашел широкого применения.

Рис.13.15.

Дроссельное регулирование

Дросселем называют гидравлическое сопротивление, которое устанавливают для регулирования потока жидкости, следовательно, и скорости выходного звена гидропривода. Конструкции дросселей будут рассмотрены ниже.

Скорость перемещения поршня в цилиндре или частоту вращения вала гидромотора можно регулировать, изменяя сопротивление дросселя.

В зависимости от места установки дросселя в схеме гидропривода по отношению к гидродвигателю различают три способа дроссельного регулирования:

- дроссель «на входе» (рис.13.16);

- дроссель «на выходе» (рис.13.17);

- дроссель «на ответвлении» (рис.13.18).

Рис.13.16 Рис.13.17 Рис. 13.18

дроссельные устройства. По конструкции дроссели подразделяются на нерегулируемые (обозначение ) и регулируемые (обозначение), а по виду гидравлических потерь в дросселях - на линейные и нелинейные.

В линейных дросселях движению жидкости препятствует сопротивление трения жидкости о стенки канала. Для получения больших сопротивлений сечение канала уменьшают, а длину увеличивают. В дросселях такого типа устанавливается ламинарный режим движения жидкости, при котором перепад давления прямо пропорционален первой степени скорости или расхода и может быть вычислен по формуле

,

где d – диаметр, например, капилляра; - коэффициент динамической вязкости;l - длина; - перепад давления на дросселе.

Примером линейного нерегулируемого дросселя может служить, капилляр. встроенный в основной трубопровод (рис.13.19). Для увеличения расхода устанавливают пакет капилляров (рис.13.20)

.

Рис.13.19

Рис.13.20

Примером линейного регулируемого дросселя может служить пробка с винтовой нарезкой, помещенной в хорошо пригнанный по наружному диаметру корпус (рис.13.21). Длину нарезки можно менять, следовательно, будет меняться и расход через дроссель.

Рис.13.21

Следует отметить нестабильность работы системы с линейным дросселем, так как его сопротивление зависит от вязкости жидкости, которая изменяется с изменением температуры.

В нелинейных дросселях широко используют местные сопротивления в виде диафрагм и насадков. В дросселях такого типа устанавливается турбулентный режим движения жидкости, при котором перепад давлений пропорционален второй степени скорости или расхода; последний может быть вычислен по формуле

,

где - коэффициент расхода;- площадь отверстия дросселя;- перепад давления на дросселе.

Примером нелинейного нерегулируемого дросселя является калиброванное отверстие (диафрагма) 1, установленное в основной поток жидкости (рис.13.22), или пакет пластичных дросселей.

Рис.13.22

Примерами нелинейных нерегулируемых дросселей могут быть золотники и краны различных конструкций (рис.13.23).

Рис.13.23

Так как в нелинейном дросселе потери энергии связаны с отрывом потока и вихреобразованиями, а потери от трения минимальны, то гидравлическое сопротивление такого дросселя практически не зависит от вязкости жидкости и изменения температуры. Нелинейные дроссели обеспечивают стабильность характеристики Q=f(Δp) в большом диапазоне чисел Re.

анализ работы гидропривода с дроссельным регулированием. В системах дроссельного регулирования характерным условием является неравенство

,

 

а применительно к гидроприводу поступательного движения

(13.2)

где Qн – подача насоса; - эффективная площадь гидроцилиндра;Vmax- максимальная скорость штока гидроцилиндра.

При таком условии избыточная часть жидкости от насоса отводится через переливной клапан в гидроемкость не выполнив никакой работы.

Система с дросселем «на входе» (рис.13.24).

Рис.13.24

В гидросистеме между насосом 1 и гидрораспределителем 3 установлен дроссель А, от настройки которого зависит скорость поршня в цилиндре 4. если сохранено условие (13.2), то избыток жидкости отводится через переливной клапан 2, при этом в нагнетательной полости насоса и перед дросселем удерживается постоянное давление, соответствующее настройке клапана 2.

Рассмотрим работу этой системы и выясним, как влияет на скорость поршня изменение полезной нагрузки Р при неизменной настройке дросселя.

Допустим, что поршень со штоком перемещается вправо. Давление рабочей жидкости в левой полости обозначим рраб, в правой – рпр (противодавление), силу трения – Т, полезную нагрузку – Р.

Составим уравнение равновесия поршня силового цилиндра:

.

В этом уравнении силу трения Т и силу от противодавления можно принять постоянными.

Следовательно, если изменится внешняя нагрузка Р, то должно измениться давление pраб. Так как дроссель А установлен последовательно к гидроцилиндру, то Qдр = Qгц. Расход, например, через нелинейный дроссель

;

.

Так как рп.к.= const, то расход через дроссель, следовательно, и скорость поршня гидроцилиндра будут меняться с изменением внешней нагрузки Р.

Система с дросселем на входе допускает регулирование скорости гидродвигателя только в том случае, если направление действия нагрузки не совпадает с направлением движения выходного звена. Действительно, если нагрузка направлена в ту же сторону, что и движение выходного звена системы, то при уменьшении подачи жидкости через дроссель поршень может перемещаться быстрее, чем будет заполняться полость цилиндра. Произойдет разрыв потока в магистрали перед поршнем.

Кроме того, например, в грузоподъемных машинах поднятый груз при опускании может упасть, так как внешняя нагрузка – груз – будет преодолевать при опускании только силу трения поршня о цилиндр и противодавление в сливной линии. Поэтому для стабилизации сил трения на сливной магистрали устанавливается подпорный клапан 5 (или демпфер), создающий противодавление рпрв нерабочей полости цилиндра. Давление подпора не должно быть больше 0,2…0,3 МПа.

Система с дросселем на выходе. В гидравлической системе (рис.13.25) дроссель В подключен на сливной магистрали после распределителя 3. скорость поршня здесь определяется объемом жидкости, который вытесняется из штоковой полости цилиндра 4 через дроссель В в гидроемкость.

 

Рис.13.25

Проанализируем работу этой системы и установим влияние изменения нагрузки Р на скорость поршня.

Составим уравнение равновесия поршня силового цилиндра:

.

Если сохраняется условие, при котором >, то давление рраб в процессе не изменяется и соответствует настройке переливного клапана 2 рп.к, т.е. . Силы трения Т для данного механизма почти неизменны. Так как по условию нагрузки Р величина переменная, то из уравнения равновесия следует, что противодавление рпр тоже будет переменным.

Давление перед дросселем «В» при некотором допущении может быть принято равным рпр, а после дросселя – почти атмосферному рат. Поэтому перепад давления в дросселе при подключении последнего на выходе является величиной переменной. Следовательно, переменным будет расход жидкости через дроссель и скорость поршня.

Система с дросселем «на выходе» более предпочтительна, чем система с дросселем «на входе». Во-первых, тепло, выделяющееся при прохождении через дроссель, отводится в гидроемкость, не нагревая гидродвигатель. Во-вторых, эту систему целесообразно, применять в монтажных механизмах, т.к. перекрывая дроссель В, можно мгновенно останавливать в нужном положении поднятый груз.

В рассмотренных выше системах дроссельного регулирования мощность, потребляемая насосом, постоянна и независима от внешней (полезной) нагрузки Р.

Система с дросселем на ответвлении. Рассмотрим третий возможный способ подключения дросселя в систему – на ответвлении (рис.13.26).

Поток жидкости, идущий от насоса 1, разделяется по двум направлениям: к гидроцилиндру 4 через распределитель 3 и через дроссель С, который установлен в ответвлении параллельно силовому цилиндру. Скорость поршня как и в предыдущих системах, определяется настройкой дросселя С.

Рис.13.26

При закрытом дросселе скорость поршня максимальна. По мере открытия его часть жидкости начинает циркулировать в гидроемкость, а скорость поршня соответственно уменьшается. Если при полном открытии дросселя сопротивление, оказываемое им и магистралью после дросселя, меньше, чем в цилиндропоршневой группе и подпорном клапане 5, то вся жидкость от насоса будет отводиться через дроссель в гидроемкость, а поршень остановится.

При указанном расположении золотника в распределителе 3 к насосу подключена поршневая полость гидроцилиндра 4, давление в которой рраб определяется нагрузкой Р+Т. Если нагрузка в процессе работы изменяется, то перепад давления в дросселе  зависит от нагрузки. Следовательно, расход жидкости через дроссель и скорость выходного звена меняются.

Клапан 2 в системе включается в работу эпизодически в момент перегрузок, выполняя, таким образом, только функцию предохранительного устройства.

Мощность, потребляемая насосом, и давление в полости нагнетания пропорциональны полезной нагрузке, поэтому гидросистема с дросселем, установленным параллельно силовому цилиндру, экономичней систем с дросселем «на входе» и «на выходе», так как к.п.д. ее выше.

Из анализа работы гидравлических систем с дроссельным способом регулирования скорости следует, что независимо от места расположения дросселя не обеспечивается постоянство скорости поршня при неизменной настройке дросселя, если нагрузка в процессе работы изменяется. Объясняется это нестабильным перепадом давления в дросселе.

Поэтому напрашивается само собой устройство, в котором автоматически поддерживался бы постоянным перепад давления на дросселе с изменением нагрузки на выходном звене. Такое устройство называется дроссель-регулятором. Этот аппарат состоит из дросселя и редукционного клапана, размещенных в общем корпусе. Расход жидкости устанавливается дросселем, а постоянство разности давления до и после дросселя обеспечивается автоматически редукционным клапаном.

Предыдущие статьи